
LectureLecture –– 99Lecture Lecture 99
SectionSection--B B

Theoretical concept of Unix Theoretical concept of Unix
Operating SystemOperating SystemOperating SystemOperating System

IntroductionIntroductionIntroductionIntroduction
Memory Management in UNIX OSy g
◦ Swapping
◦ Demand Pagingg g

Memory ManagementMemory Management

Memory management is the act ofMemory management is the act of

managing computer memory.

In its simpler forms, this involves

providing ways to allocate portions of

memory to programs at their request andmemory to programs at their request, and

freeing it for reuse when no longer

needed.

UNIX Memory Management PoliciesUNIX Memory Management Policies

Swapping
◦ Easy to implementEasy to implement
◦ Less system operating cost

D d P iDemand Paging
◦Greater flexibilityG ea e e b y

Swapping
A process needs to be in memory to be executed. A process ,
however can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution.

Swapping of two processes using a disk as a Backing Store

For example: assume a multiprogramming environment
lets say a Unix programming environment with a roundlets say a Unix programming environment, with a round
robin CPU algorithm. When a quantum expires, the
memory manager will start to swap out the process thatmemory manager will start to swap out the process that
just finished, and to swap in another process to the
memory space that has been freedmemory space that has been freed.

In the mean time the CPU scheduler will allocate a time
li t th i Wh hslice to some other process in memory. When each

process finishes its quantum, it will be swapped with
thanother process.

The quantum must also be sufficiently large that
reasonable amounts of computing are done between
swaps.

A variant of this swapping policy is used for priority
based scheduling algorithms.g g

If a higher priority process arrives and wants service,
the memory manager can swap out the lower prioritythe memory manager can swap out the lower priority
process.

Wh th hi h i it fi i h th lWhen the higher priority process finishes, the lower
priority process can be swapped back in and
continued. This variant of swapping can sometimes
called roll out, roll in.

Swapping requires a backing store. The backing store
is commonly a fast disk. It must be large enough to
accommodate copies of all memory images for all
users, and it must provide direct access to these

Demand Paging
Consider how an executable program might be loaded from disk
into memory.

One option – is to load the entire program in physical memory at
program execution timeprogram execution time.

However problem with this approach is we may not initially need the
entire program in memory.

Consider a program that starts with a list of available options from
which the user is to select. Loading the entire program into memory
results in loading the executable code for all options regardless ofresults in loading the executable code for all options, regardless of
whether an option is ultimately selected by the user or not.

An alternative strategy is to initially load pages only as they are
needed. This technique is known as Demand Paging.

A Demand paging system is similar to a Paging System with
Swapping where processes reside in secondary memory (UsuallySwapping, where processes reside in secondary memory (Usually
a disk.)

Paging System in brief :
Logical Address vs. Physical Address: An address generated by

th CPU i l f d t L i l ddthe CPU is commonly referred to as Logical address .
Where as an address seen by the memory unit- that is, the one

loaded into the memory address register of the memory – is
l f d t h i l ddcommonly referred to as a physical address.

Physical memory is broken into fixed-sized blocks called
framesframes.

Logical memory is also broken into blocks of the same size
called pages.p g

Set up a page table to translate logical to physical addresses.

When a process is to be executed, its pages are loaded into
any available memory frames from the backing store. The
backing store is divided into fixed blocks that are of the same
size as the memory framessize as the memory frames.

Every address generated by the CPU is divided into two parts :
a page number (p) and a page offset (d).p g (p) p g ()

The Page number is used as an index into a page table. the
page table contains the base address of each page in physical
memory.

This base address is combined with the page offset to define
the physical memory address that is sent to the memory unit

Demand Paging
Processes reside on secondary memory (which isProcesses reside on secondary memory (which is
usually a disk). when we want to execute a process, we
swap it into memory. Rather than swapping the entire p y pp g
process into memory, how ever we use a lazy swapper.

A lazy swapper never swaps a page into memory y pp p p g y
unless that page will be needed.

Since we are now viewing a process as a sequence of
pages , rather than as one large contiguous address
space, use of swap is technically incorrect. A swapper
manipulates the entire processes, where as a pager is
concerned with the individual pages of a process. We
th th th i tithus use a pager, rather than swapper, in connection
with demand paging.

Basic Concept:
When a process is to be swapped in, the pager
guesses which pages will be used before the
process is swapped out again.

Instead of swapping in a whole process the pagerInstead of swapping in a whole process, the pager
brings only those necessary pages into memory.

Th it id di i t th t illThus, it avoids reading into memory pages that will
not be used anyway, decreasing the swap time and
th t f h i l d dthe amount of physical memory needed.

With this scheme, we need some form of
hardware support to distinguish b/t those
pages that are in memory and those pages that
are on the disk.
The valid-invalid bit scheme can be used for e a d a d b t sc e e ca be used o
this purpose.
With each page table entry a valid invalid bit isWith each page table entry a valid–invalid bit is
associated

i◦ v ⇒ in-memory,
◦ i ⇒ not-in-memory
Initially valid–invalid bit is set to i on all entries.

ApplicationsApplicationsApplications Applications
Manual memory management
◦ It can be easier for the programmer to◦ It can be easier for the programmer to

understand exactly what is going on;
◦ Some manual memory managers perform better

when there is a shortage of memory.
Automatic memory management
◦ The programmer is freed to work on the actual◦ The programmer is freed to work on the actual

problem;
◦ Module interfaces are cleaner;
◦ There are fewer memory management bugs;
◦ Memory management is often more efficient.

ResearchResearchResearchResearch
Efficient dynamic memory management
bj ti i l d th f ll i t i tobjectives include the following two points:

the ability to quickly find and allocate free
memory to ensure real-time; the need to y ;
reduce memory fragmentation, full use of the
limited physical memory resources.
Memory allocation means to determine theMemory allocation means to determine the
efficiency of memory management, which is
the efficient use of limited memory key. y y
Based on this, the paper RTDBS memory
management conducted a study to improve
the memory utilization of fully reflect real-the memory utilization of fully reflect real
time.

